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Abstract

Current formal mathematics, being divorced from the empirical, is entirely a social
construct, so that mathematical theorems are no more secure than the cultural belief
in 2-valued logic, incorrectly regarded as universal. Computer technology, by
enhancing the ability to calculate, has put pressure on this socia construct, since
proof-oriented formal mathemati csisawkward for computation, while computati onal
mathematics is regarded as epistemologically insecure. Historically, a similar epis-
temologica fissure between computational/practical Indian mathematics and for-
mal/spiritual Western mathematics persisted for centuries, during a diaogue of
civilizations, when texts on "algorismus’ and ’infinitesimal’ calculus were imported
into Europe, enhancingtheability tocalculate. | arguethat thisepistemol ogi cal tension
should be resolved by accepting mathematics as empirically-based and falible, and
by revising accordingly the mathematics syllabus outlined by Plato.
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0 Introduction

0.0 The East-Wes civilizational clash in mathematics: pramana vs proof

In Huntington’s terminology of a clash of civilizations, one might analyse the basis of
the East-West civilizational clash asfollows: the Platonic tradition is central to the West,
even if we do not go to the extreme of Whitehead's remark, characterising all Western
philosophy as no more than a series of footnotes to Plato. But the same Platonic tradition
is completely irrelevant to the East.

In the present context of mathematics, the key issue concerns Plato’s dislike of the
empirical, so the civilizational clash is captured by the following central question: can
a mathematical proof have an empirical component?

0.1 ThePlatonic and Neoplatonic rgection of the empirical

According to university mathematics, as currently taught, the answer to the above
question is no. Current-day university mathematics has been enormously influenced by
(Hilbert's analysis of) “Euclid’s’ Elements, and Proclus,? a Neoplatonist and the first
actual source of the Elements, argued that

Mathematics...occupies the middle ground between the partlessredlities...and divisible things.
The unchangeable, stable and incontrovertible character of [mathematical] propositions shows that
it [mathematics] is superior to the kinds of things that move about in matter.... Plato assigned dif-
ferent types of knowing to...the...grades of reality. To indivisible realities he assigned intell ect,
which discernswhat is intelligible with simplicity and immediacy, and...is superior to al other
forms of knowledge. To divisible things, in thelowest level of nature, that is, to al objects of
sense-perception, he assigned opinion, which lays hold of truth obscurely, whereas to inter-
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This suggests that, when we go beyond the empirical, the ‘universal’ may lie, asin a
physical theory, in what Poincaré called ‘ convenience’. This criterion of ‘ convenience’
can have profound consequences as in the case of the theory of relativity: the constancy
of the speed of light is not an empirical fact (though elementary physics texts usually
misrepresent it as such), Poincaré defined the speed of light as a constant as a matter of
‘convenience’. | seethiscriterion of ‘ convenience’ as more modest than the criterion of
beauty which seeks to globalize alocal sense of aesthetics.

3 Higtory of the calculus

If mathematicsisasocial construct, which changes with changing social circumstances,
then the question is: how should one teach mathematics today? Admitting the role of
technology in shaping mathematics, accepting that the computer is going to play an
increasingly important role in the future, and admitting that formal mathematics is not
quite suited to computers, the conclusion seems to be forced that a different type of
mathematics should be taught. The calculusis at the core of many numerical computa-
tions, but can one at all do the cal culuswithout real numbers? An alternative mathemati-
cal epistemology could be invented ab initio. Or one could fall back on the alternative
epistemology of mathematicsin India, as described in the Yuktibhasa. This alternative
epistemology provided the natural soil in which the calculus grew. Recognizing the
existence of this alternative epistemology of mathematics requires, however, an alter-
native account of the history of mathematics. Thisisan illustration of the general maxim
that the history of mathematics has profoundly influenced its philosophy, so that to
change the philosophy of mathematics, one must also revise its history. A condensed
account of the suggested revision follows.

According to the Western history of the calculus, the calculus was the invention of
L eibniz and Newton, particularly Newton, who used it to formulate his‘ laws' of physics.
In a series of papers, | have pointed out that this narrative needs to be significantly
changed for several reasons.

(a) The key result of the calculus, attributed variously to Gregory,®® Newton, and to
Newton’s student Brook Taylor,?? is the infinite-series expansion today commonly
known as the Taylor’s series expansion. This infinite series expansion isfound in India
a few centuries before Newton in the work of Madhava of Sangamagrama and in the
later works like Nilkantha's TantraSangraha (1501 CE), Jyeshtadeva's YuktiBhasa
(“Discourse on Rationale” c. 1530 CE)®0 the TantraSangrahaVakhya, the Yukti Dipika,
the Kriyakramakari, the KaranaPadhati and other such widely distributed and still
existent works of what has been called the Kerala school of mathematics and astronomy.
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This key passage may be translated as follows.

Multiply the arc by the square of the arc, and repeat [any number of times]. Divide by the product
of the square of the radius times the square of successive even numbers increased by that number
[multiplication being repeated the same number of times]. Place the arc and the results so obtained
one below the other and subtract each from the one above. These together give thejiva...

Jiva relates to the sine function. Etymologically, the term sine derives from sinus (=
fold) a Latin translation of the Arabic jaib (opening for the collar in a gown), which is
amisreading of the Arabic term jiba (both terms are written as jb, omitting the vowels).
Mathematically, however, as is well-known, jiva and sara, like the sine and cosine of
Clavius' sine tables (as their very title shows),51 were not the modern sine and cosine
but these quantities multiplied by the radius r of a standard circle. The jiva corresponds
tor sin 6, while the sara corresponds to r (1-cos9).

In current mathematical terminology, this passage saysthefollowing. Let r denote the
radius of the circle, let s denote the arc and let th denote the nth expression obtained by
applying therulecited above. Therulerequiresusto calculate asfollows. (1) Numerator:
multiply the arc s by its square s?, this multiplication being repeated n times to obtain

n
s s2. (2) Denominator: Multiply the square of the radius, r2, by [(2k)?2+2K]
1
(“square of successive even numbers increased by that number”) for successive values
n
of k, repeating this product n times to obtain |_| r2[(2k)2 + 2K]. Thus, the nth iterateis
k=1
obtained by
- 8
"7 (22+2) 42+ 4) 0. ([(2n)2 + 2n] (720

The rule further says:
jiva= (st1) + (to—t3) + (ta—ts) + ...
Substituting:
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(1) jiva=r sin6,
(2) s=r 6, so that 2"+ 1/r2n = §2M1 gnd noticing that
(3) [(2K)2+2K] = 2k(Rk+1), so that
(4) (2%+2)(42+4)...[(2n)2 + 2n] = (2n +1)!,
and cancelling r from both sides, we see that thisisentirely equivalent to the well-known
expression
83 8> o/
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This verse is followed by a verse describing an efficient numerical procedure for
evaluating the polynomial .62 The existence of these verses has been known to Western
specialists for nearly two hundred years, and is today acknowledged in some Western
texts on the history of mathematics, like those of Jushkevich,63 Katz54 etc.

In current mathematical terminology, the key step in the Yuktibh&sa rationale for the
above seriesisthat

n

1 ey 1

(1) lim nk+1Z' —7k+1,k—1,2,3,...,
1

N— oo

in the sense that the remaining terms are numerically insignificant, for large enough n.

(b) A relevant epistemological questionisthis: did Newton at all understand the result
he is alleged to have invented? Did Newton have the wherewithal, the necessary
mathematical resources, to understand infinite series? As is well known, Cavalieri in
1635 stated the above formulaaswhat was | ater termed a conjecture. Wallis, too, simply
stated the above result, without any proof.6° Fermat tried to derive the key result above
from a result on figurate numbers, while Pascal used the famous “Pascal’s” triangl €56
long known in India and China. Though Newton followed Wallis, he had no proof
either,57 and neither did Leibniz who followed Pascal. Neither Newton nor any other
mathematician in Europe had the mathematical wherewithal to understand the calculus
for another two centuries, until the development of the real number system by Dedekind.

(c) The next question naturally isthis: if Newton and Leibniz did not quite understand
the calculus, how did they invent it? In the amplified version of the usual narrative,
how did Galileo, Cavalieri, Fermat, Pascal, and Roberval etc. all contribute to the
invention of a mathematical procedure they couldn’t quite have understood? The
frontiers of a discipline are usually foggy, but here we are talking of a gap which is
typically 250 years.

(d) Clearly a more natural hypothesis to adopt is that the calculus was not invented
in Europe, but was imported, and that the calculus took nearly as long to assimilate as
did zero. Since authoritative Western histories of mathematics are replete with wild
claims of transmission from Greece, an appropriate standard is needed for the evidence
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for transmission. | have suggested that we follow the current legal standard of evidence,
by establishing (i) motivation, (ii) opportunity, (iii) documentary evidence, and (iv)
circumstantial evidence.

Motivation (a) : Europe had strong motivation to import mathematical and astronomi-
cal knowledge in the 16th and 17th centuries CE, because mathematics and astronomy
werewidely regarded as holding the key to navigation which was the route to prosperity
hence the critical technology of the times. Asisnow widely known, Europe did not have
areliable technique of navigation, and European governments kept offering huge prizes
for this purpose from the 16th until the 18th century CE. Indeed, the French Royal
Academy, the Royal Society of London etc. were started in this way in an attempt to
develop the astronomical and mathematical procedures needed for areliable navigation-
al technique.

The first navigational problem concerned latitude: right from Vasco da Gama,
Europeans attempted to learn the Indo-Arabic techniques of determining latitude
through instruments like the Kamal. The Indo-Arabic technique of determining latitude
in daytime assumed a good calendar, and this led to the Gregorian calendar reform. As
a student and correspondent of Pedro Nunes, Clavius presumably understood that
reforming the calendar, and changing the date of Easter was critical to the navigational
problem of determining latitude from the observation of solar altitude at noon, as
described in widely distributed Indian mathematical -astronomical texts, and calendrical
manuals.

Opportunity: On the other hand, right from the 16th century there was ample
opportunity for Europeans to collect Indian mathematical-astronomical and calendrical
texts. The Jesuits were in India, with their strongest centre being Cochin, from where
acopy of the Tantrasangraha or Yuktibhasa could easily have been procured. Each Jesuit
was expected to know the local language, and Alexander Valignano declared that it was
more important for the Jesuitsto know the local language than to learn philosophy. They
could hardly have functioned without a knowledge of the local calendar and days of
festivity. One of the earliest Jesuit collegeswasat Cochin, and it typically had an average
of about 70 Jesuits during the period 1580-1660. Prior to this period, printing presses
had already been started in languages like Malayalam and Tamil, and Malayalam was
being taught at the Cochin college at the latest by 1590.

Documentary evidence: Moreover, the Jesuits were systematically collecting and
translating local texts and sending them back to Europe. In particular, Christoph Clavius,
head of the Gregorian Calendar Reform Committee changed the mathematics syllabus
of the Collegio Romano, to correct the Jesuit ignorance of mathematics, and from the
first batch of mathematically trained Jesuits he sent Matteo Ricci to Cochinto understand
the available texts in India on the calendar, and the length of the year.68

Motivation (b): Pedro Nunes was also concerned with loxodromic curves, the key

aspect of Mercator’s navigational charts, which involved a problem equivalent to the
fundamental theorem of calculus. Pedro Nunes obtained his loxodromic curves using
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sine tables, which tables were later corrected by Christoph Clavius and Simon Stevin.
Thus, precise sine values were akey concern of European astronomers and navigational
theorists of the time. The infinite series expansion as used by Madhava to calculate
high-precision sine values, the coefficients used for efficient numerical calculation of
these values, and the 24 val ues themselves were incorporated in a single sloka each, the
last two found also in the widely distributed calendrical manuals like Karanapadhati.

Motivation (c): Europeans could not use Indo-Arabic techniques of longitude deter-
mination because of a goof-up about the size of the earth. Columbus, to promote the
financing of his project, downgraded the earlier accurate Indo-Arabic estimates of the
size of the earth by 40%. But this size entered as a key parameter in the Indo-Arabic
techniques. Neverthel ess, Europeans remained interested in the Indo-Arabic techniques
of longitude determination, and when the French Royal Academy ultimately developed
amethod to determine longitude on land, it was a slight improvement of the technique
of eclipses mentioned in the texts of Bhaskara-1, and the tome of al Biruni.

Circumstantial evidence: Once in Europe the imported mathematical techni-
ques could easily have diffused, and there is circumstantial evidence that many
contemporary mathematicians knew something of the material in Indian texts.
For example, Clavius’' competitor and critic Julian Scaliger introduced the Julian
day-number system, essentially the ahargana system of numbering days fol-
lowed in Indian astronomy since Aryabhata. Galileo’s access to Jesuit sources
is well documented, as is that of Gregory and Wallis. Cavalieri was Galileo’s
student, and Gregory does not claim originality for his series. Marin Mersenne
was a clearinghouse for mathematical information, and his correspondence
records hisinterest in the knowledge of Brahminsand ‘ Indicos’. Fermat, Pascal,
Roberval were all in touch with him, and part of his discussion circle. Thereis
other circumstantial evidence to connect Fermat to Indian mathematical texts,
for instance his famous challenge problem to European mathematicians, and
particularly Wallis, involves a solved problem in Bhaskara’'s Beejganita.5®
“Julian’ day-number, “Fermat’s’ challenge problem, and “Pascal’s” triangle cover only
some of the circumstantial evidence of the inflow of mathematical and astronomical
knowledge into Europe of that period, but | will not examine more details here, since |
regard the above as adequate to make a strong case for the transmission of the calculus
from Indiato Europe in the 16th and 17th c. CE.

4 Mathematics Education

To jump from the past to the future: what bearing do these concerns have on current
mathematics education? In the light of the revised history of the calculus, in the light of
the argument that mathematics is a social construction that is likely to change with
changing technology, especially the widespread use of computers, how should mathe-
matics and calculus be taught today?
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In accordance with the principle that phylogeny is ontogeny, the natural way to learn
the subject isto retraceitsontogenesis. The current way of teaching the calculus retraces
the ontogenesis of the calculusin Europe. The calculusisfirst taught as an intuitive and
unclearly understood thing, which is neverthel ess indispensable for practical purposes.
After at least acouple of years (representing the gap of acouple of centuriesin Europe),
one teaches the real number system, and the elements of mathematical analysis, and the
Riemann integral, finally leading to a proof of the so-called Taylor’s theorem, the
classical version of the fundamental theorem of cal culus, and Peano’s existence theorem
for the solution of differential equations etc. Numerical analysis, and discretisation, is
typically expected to come after this. Since pedagogy followsthe (perceived) ontogeny,
the revised ontogenesis suggests a revised way to teach mathematics. The ‘numerical
calculus' of the Yuktibhasa, as distinct from both calculus and analysis, can be taught
directly as a technique of computation, using floating point numbers and empirical
rationale.

A similar conclusion follows from the argument that formal mathematics is a social
construction, likely to change with technology. The computer hasenormously simplified
complex calculations, and has thus encouraged the view of mathematics as calculation.
By encouraging the idea of mathematics-as-calculation, computer technology has al-
ready created sharp conflicts with Western mathematical orthodoxy, and its theological
orientation towards mathematics-as-proof. Ideally one is expected to prove a conver-
gence theorem for an algorithm before writing a computer program for it. Ideally one
should even prove the program that one uses: of what value is a computer-aided proof
of the four-color theorem if the program used in the proof cannot itself be proved? This
requirement of proof is rarely respected in practice. Few people who use computers
(physicists, engineers etc.) have enough mathematical training to provide these kinds of
proofs. Even if they have, the required proofs may simply not be available, as in the
case, mentioned earlier, of stochastic differential equations driven by Lévy motion. A
practical requirement must be met here and now. For a practical requirement, one
generally cannot wait for aslong as one may be ready to wait to demonstrate the validity
of an eternal truth.

Both arguments suggest that it is time to revise the mathematics syllabus outlined by
Plato.

(a) Mathematics-as-cal culation should be taught for its practical value, at the elemen-
tary and intermediate level. This applies especially to the calculus: given its revised
ontogenesis, and given its implementation on computers.

(b) Mathematics must be taught as empirically based, and fallible. Thus, certainly, the
question no longer is. what is the value of 1-1+1-1+1-1...? Nor is it any longer the
question: how should onedefine 1-1+1-1+1-1... so asto | ead to atheory most acceptable
to authoritative mathematicians? Rather, the question is this. are there methods of
summing this series that are empirically useful ? Hence, a technique of calculation, e.g.
1-1+1-1+1-1... = %>, could be acceptable if it is of practical value, like an engineering
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technique, or can be empirically validated, like a physical theory, or in conjunction with
a physical theory. A given technique of calculation may be fallible, and may not work
in another case: for example, the standard technique of extracting afinite value from a
divergent integral, as used in renormalization in quantum field theory, does not work
with shock waves. While one need have no qualms about non-universality, naturally,
the most convenient conventions will be those that are most widely applicable.

(c) On the other hand, | feel Proclus did have a point, that at least at an elementary
level, mathematics-as-proof does afford a certain aesthetic satisfaction, even if mathe-
matics as proof does not fulfill the original promise of providing secure knowledge.
Thus, | feel that the teaching of mathematics-as-proof, like the teaching of music, or
other art form, ought not to be discontinued altogether, but it should be an optional
matter, which could be taken up, especially at higher levels, by those interested in it.
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