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PROBABILITY IN ANCIENT INDIA

C. K. Raju

INTRODUCTION: MATHEMATICAL PRE-REQUISITES

Permutations and Combinations

A first course on probability (at the high-school level) typically begins with an
account of the theory of permutations and combinations needed for calculating
probabilities in games of chance, such as dice or cards.

Like many other aspects of mathematics, this theory of permutations and com-
binations first developed in India, although an account of its history is usually
missing in stock presentations of combinatorics.

In fact, the theory of permutations and combinations was basic to the Indian
understanding of metre and music. The Vedic and post-Vedic composers depended
on combinations of two syllables called guru (deep, long) and laghu (short). The
earliest written account of this theory of metre is in Pifigala’s Chandahsitra (—3™
c. CE), a book of aphorisms (s@tra-s) on the theory of metre (chanda). To calculate
all possible combinations of these two syllables in a metre containing n syllables,
Pifigala gives the following rule! (which explicitly makes use of the symbol for
zero). “(Place) two when halved;” “when unity is subtracted then (place) zero;”
“multiply by two when zero;” “square when halved.” In a worked example, Dutta
and Singh? show how for the GayatrT metre with 6 syllables this rule leads to the
correct figure of 2% possibilities.

That this rule basically involves the binomial expansion is made clear by Pingala’s
commentator the 10" c. CE Halayudha. Thus, in a 3-syllabic metre with two un-
derlying syllables, guru and laghu, 3 guru sounds will occur once, 2 gurus and
1 laghu will occur twice, as will 1 guru and 2 laghus, while 3 laghus will occur
once. Symbolically (g + 1)® = g3 + 3¢%l + 3gl®> +[3. To generalize this to the
case of n underlying syllables, Halayudha explains the meru-prastara (pyramidal
expansion) scheme for calculation,® which is identical to “Pascal’s” triangle which
first appeared in Europe about a century before Pascal (on the title page of the
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Arithmetic of Apianus) and in China in the 14*" ¢.* An example, using the Gayatri
meter is also found in Bhaskara’s Lilavati.> The accounts found in stock Western
histories of mathematics (such as that by Smith®) incorrectly state that no at-
tention was paid in India to the theory of permutations and combinations before
Bhaskara IT (12" c. CE).

Although this theory is built into the Vedic metre, the earliest known written
account relating to permutations and combinations actually comes from even be-
fore Pifigala, and is found in the —4*"" c. Jain Bhagwati Sitra. Permutations were
called vikalpa-ganita (the calculus of alternatives), and combinations bhanga. The
text works out the number of combinations of n categories taken 2, 3 etc. at a
time.

Incidentally, this throws up large numbers of the sort that cannot easily be
written in Greek (Attic) and Roman numerals. It should be noted that while the
Yajurveda’ already used a place value system, and gives names for numbers up
to 10'2, the Jain literature typically runs into very large numbers, such as 1059,
and the Buddha when challenged (perhaps by a Jain opponent) names numbers
up to 10°3. Large numbers have an intimate connection with the philosophy of
probability, as examined in more detail, later on.

From the earliest Vedic tradition, there is a continuous tradition linking the first
accounts of permutations and combinations with those of Bhaskara IT (12" ¢.), and
later commentaries on his work, up to the 16** c. CE, such as the Kriyakramkari.
Thus,® the surgeon Susruta (—2"¢ c. CE) in his compendium (Susruta-samhita)
lists the total number of flavours derived from 6 flavours taken 1 at a time, 2 at
a time, and so on. Likewise, Varahamihira (6'* c.) who reputedly wrote the first
Indian text on astrology (Brhat-Jataka) states in it the number of perfumes that
can be made from 16 substances mixed in 1, 2, 3, and 4 proportions.

Similar examples are found in the Patiganita (Slate Arithmetic) of Sridhar (10
c.), a widely used elementary school-text, as its name suggests, Mahavira’s (8" c.)

4Joseph Needham, The Shorter Science and Civilisation in China, vol. 2 (abridgement by C.
A. Ronan). Cambridge University Press, 1981, p. 55.

5Bhaskara, Lilavatz, trans. K. S. Patwardhan, S. A. Naimpally, and S. L. Singh, p. 102. The
verse is numbered differently in different manuscripts. K. V. Sarma in his critical edition of the
16" c. southern commentary Kriyakramakari (VVRI, Hoshiarpur, 1975) on the Lzlavati, gives
this as verse number 133, while the other cited source has given it as verse number 121.

SD. E. Smith, History of Mathematics, Dover Publications, 1958, vol. 2, p. 502.

"Yajurveda xvii.2 gives the names for the first 12 powers of 10, the first five being more or
less similar to what they are today.

8This has an interesting connection with the history of the calculus. Fermat’s challenge prob-
lem is identical with a solved exercise in Bhaskara II. So this is one of the texts that travelled from
Cochin to Rome, and Bhaskara was probably Pascal’s source. Bzjaganita of Srt Bhaskaracarya,
ed. Sudhakara Dvivedi, Benares, 1927 (Benares Sanskrit Series, No. 159), chapter on cakravala,
p- 40. An account of Bhaskara’s cakravala method may be found, for instance, in Bag, cited
above (pp. 217-228). For a formalised account of Bhaskara’s cakravala method, see I. S. Bhanu
Murthy, A Modern Introduction to Ancient Indian Mathematics, Wiley Eastern, New Delhi,
1992, pp. 114-21. (Bhanu Murthy’s book has a typo here.) For Fermat’s challenge problem and
“Pell’s equation”, see D. Struik, A Source Book in Mathematics 1200-1800, Harvard University
Press, Cambridge, Mass., 1969, pp. 29-30.

9A. Bag, Mathematics in Ancient and Medieval India, cited above, p. 188.
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Ganita Sara Samgraha, and Bhaskara II (Lilavati) etc. Bhaskara mentions that
this formula has applications to the theory of metre, to architecture, medicine, and
khandameru (“Pascal’s triangle”). In these later texts, one finds explicitly stated
formulae for permutations and combinations.

For example, to calculate (Z) values, Sridhar, in his text on slate-arithmetic!?
(Patiganita), gives the following rule.

TR AT T e e i

AT T FALAT FATRAAE LG o0

This translates as follows (Patiganita, 72, Eng. p. 58)

Writing down the numbers beginning with 1 and increasing by 1 up to
the (given) number of savours in the inverse order, divide them by the
numbers beginning with 1 and increasing by 1 in the regular order, and
then multiply successively by the preceding (quotient) the succeeding
one. (This will give the number of combinations of the savours taken
1,2,3,..., all at a time respectively.)!!

Thus, in the case of 6 savours, one writes down the numbers 1 to 6 in reverse
order
6,5,4,3,2,1
These are divided by the numbers in the usual order, to get the quotients
6 5 4 3 2 1
17273 4756
Then, according to the rule, the number of combinations of savours taken 1 at
a time, 2 at a time, etc., up to all at a time are respectively
6 6 56 5 4
-, =X=, =X=X=, €
1’1 21 2 3
Although, the formulae are mostly stated in identical terms, they are applied

most flamboyantly by Bhaskara II. For example, to illustrate one of his formulae,
Bhaskara asks for the total number of 5 digit numbers whose digits sum to 13.12

tc.

He then adds in the next verse that although this question involves “no mul-
tiplication or division, no squaring or cubing, it is sure to humble the egotistical
and evil lads of astronomers”.

1Oéridhar7 Patiganita, 72, ed. & trans. K. S. Shukla, Dept. of Mathematics and Astronomy,
Lucknow University, 1959, Sanskrit, p. 97.

11 patiganita of Sridhar, trans. K. S. Shukla. As he points out, similar articulations are found
in the Ganita Sara Samgrah of Mahavira, vi.218, MahaSiddhanta of Aryabhata 2, xv, 45-46 etc.

12 Lilavatz of Bhaskaracarya, trans. Patwardhan et al., p. 181. They give the number of this
verse as 276, whereas, in K. V. Sarma’s critical edition of Kriyakramkari, a commentary on the
Lilavatz, this is at 269, p. 464.



4 C. K. Raju

Weighted averages

The notion of simple average was routinely used in Indian planetary models, where
each planet had a mean motion, and a deviation from it. Unlike Western planetary
models, there was no belief in any divine harmony nor any faith in divine “laws”
of any sort involved here, just an average motion and deviations from it in a down-
to-earth empirical sense. While the deviations from the mean were not regarded as
necessarily mechanically explicable, neither were they regarded as quite “random”,
for it was believed that the deviation could be calculated in principle, at least to a
good degree of approximation (required for the Indian calendar, which identified
the rainy season, and hence was a critical input for monsoon-driven agriculture in
India).

In various elementary mathematical texts, in the context of computing the den-
sity of mixtures or alloys, one also finds the usual formula for weighted averages,
which is so closely related to the notion of “mathematical expectation” in proba-
bility theory. For example, we find in verse 52(ii) of the Patiganita (Eng. p. 36)
the following:

“The sum of the products of weight and wvarna of the several pieces
of gold, being divided by the sum of the weights of the pieces of gold,
give the varna (of the alloy).

That is, if there are n pieces of gold of weights w1 .wo, . .., w,, and varnas vy, v, ..., Un,
the varna v of the alloy is given by v = wl“qu‘f;gf;y“’”

(The term varna is analogous to the term “carat”, with pure gold consisting of
16 varnas. ) Understandably, this topic of “mixtures” is given special emphasis
in Jain texts like those of Mahavira.

The relevance of these weighted averages to gambling was understood. It is in
this very context of “mixtures” that the Ganita Sara Samgraha'3(268.5, 273.5)
gives the example of “Dutch bets” mentioned by Hacking.!* This is “a rule to
ensure profit (in gambling) regardless of victory or loss”, a method of riskless
arbitrage, in short. The text illustrates the rule with an example, where “a great
man knowing mantra and medicine sees a cockfight in progress. He talks to the
owners of the birds separately in a mysterious way. He tells one that ‘if your
bird wins, you give me the amount you bet, and if it loses, I will give you % of
that amount’. Then he goes to the owner of the other bird where on those same
conditions he promised to pay % of the amount. In either case, he earned a profit
of only 12 pieces of gold. O mathematician, blessed with speech, tell me how much
money did the owner of each bird bet.”

13 Ganitasara-Samgraha, (Hindi trans. L. C. Jain), Jain Samskrti Samraksha Sangh, Sholapur,
1963, pp. 159-60.

MTan Hacking, The Emergence of Probability: A Philosophical Study of Early Ideas about
Probability, Induction and Statistical Inference, Cambridge University Press, 1975, pp. 6-9.
Hacking uses the English translation of Ganita Sara Samgraha, trans. M. Rangacharya (1912),
pp. 162-3.



Probability in Ancient India 5

Precise fractions

Apart from the ability to work with large numbers, and to calculate permutations
and combinations, and weighted averages, there is also needed the ability to work
with fractions having large numerators and denominators. Such ability, indicative
of greater precision, is not automatic. Such precise fractions with large numerators
and denominators are certainly found in Indian mathematical texts from the time
of Aryabhata.'® Their use is also reflected in the Indian calendar.

By way of comparison, the Romans had only a few stock fractions to base 12
(each of which had a separate name). Hence they had a wrong duration of the
year as 365% days, just because it involved such an easy-to-state fraction. And
they retained this wrong duration even after the repeated calendar reforms of the
40 to 61 c., and, for over a thousand years, until 1582. The Greek Attic numerals
were similar, and the Greeks did not work with such fractions in any text coming
actually (and not notionally) from before the 9" ¢. Baghdad House of Wisdom.'6
The significance of the Baghdad House of Wisdom is that Indian arithmetic texts
travelled there, were translated into Arabic, and some of these were further trans-
lated from Arabic into Greek!” like the Indian story book, the Paricatantra.'®
(All known Arabic and Greek manuscripts of “Ptolemy’s” Almagest, for example,
post-date the Baghdad House of Wisdom—most also post-date the Crusades—and
are decidedly post-9*" c. accretive texts as is clear, for example, from their star
lists. Therefore, it would be anachronistic to attribute, uncritically and ahistori-

15 Aryabhatiya, Gitika 3-4, trans. K. S. Shukla and K. V. Sarma, INSA, New Delhi, 1976, p. 6.
This verse gives revolution numbers for various planets, and requires us to calculate fractions
such as 1582237500/4320000. Up to a hundred years ago, Western historians, who subscribed to
the view that the world was created a mere 6000 years ago, invariably described these figures as
fantastic cosmological speculations, and meaningless by implication. However, the above fraction
leads to a surprisingly accurate figure of 365.25868 days for the length of the sidereal year
(compared to its modern value of 365.25636 days). In contrast, the value attributed to Ptolemy
(365.24666 days) is significantly less accurate, and we know that the length of the (tropical) year
on the Roman calendar was less accurate than the figure attributed to “Ptolemy”. This led to
a slip in the date of Easter, and hence necessitated the repeated attempts at Roman calendar
reform in the 5" and 6" centuries.

16The difference between actual and notional dates is important. The only clear way to check a
notional date is through the non-textual evidence, and it is hard to believe that the crude Greek
and Roman calendars, despite repeated attempts by the state and church to reform them, could
have co-existed for centuries with relatively sophisticated astronomy texts, such as the Almagest
attributed to Ptolemy (which attribution makes its notional date 2°d c., although the actual
manuscripts of it come from a thousand years later, and are accretive).

17C. K. Raju, Cultural Foundations of Mathematics, Pearson Longman, 2007. This text ex-
amines in detail the points made in note 16 above. Also, C. K. Raju, Is Science Western in
Origin?, Citizens International and Multiversity, Penang, 2009, contains a brief account.

18Bdward Gibbon, The Decline and Fall of the Roman Empire, Great Books of the Western
World, vols 37-38, Encyclopaedia Britannica, Chicago, 1996, vol. 2, note 55 to chp. 52, p. 608.
Others have assigned the date of 1080 to Simon Seth’s Greek translation of the Pancatantra from
Arabic. The Arabic translation Kalilah va Dimnah by Ibn al Muqaffa (d. 750), was long before
the formation of the House of Wisdom, and the movement called the Brethren of Purity (Ikhwan
al-Safa) derives inspiration from this text. This translation was from the Pahlavi translation
which was from the Sanskrit, and done by Burzoe himself, the vazir of Khusrow I, Noshirvan,
according to the Shahnama of Firdausi.
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cally, the use of sexagesimal fractions in such a late text to a mythical Claudius
Ptolemy of the 2°¢ ¢.19)

The game of dice in India

Thus, Indian tradition had all the arithmetic tools needed for the calculation of
discrete probabilities. But was there a concept of probability? Stock mathematics
texts draw their examples from a range of sources, and we also occasionally find
some examples related to games of chance such as dice. The same slate-arithmetic
text (Patiganita, 99-101, p. 145) gives a long and complex rule for calculating
whether one has won or lost in a game of dice. However, this is given as an
application of the formulae for arithmetic progression. The substance of these
formulae is explained as follows.

Suppose that two persons A and B gamble with dice, and that they alternately
win p1, papsps casts. If the stake-moneys of the casts be in the arithmetic progres-
sion a,a + d,a + 2d, ... then the amount won by A = [a + (a + d) + (a + 2d) +
... (p1 terms)] + [a + (p1 + p2)d + a(p1 + p2 + 1)d + ... (p3 terms)]. Likewise, the
amount won by B = [a + pid +a+ (p1 + 1)d + ... (p2 terms)] + [a + (p1 + p2 +
p3)d++(p1+p2+ps+1)d+...(ps terms)] and this leads to the enunciated rule.

This suggests that the game of dice might not have been played the same way
in India, as it is played today, and also that a common strategy followed was
(somewhat like martingale bets) to go on increasing the stake as the game went
on. But this still does not give us enough information. (Accounts of the game of
dice are not found in the Ganita Sara Samgraha.?® Presumably, the Jains did not
want their children to start thinking about such things!) The text naturally takes
it for granted that the readers are familiar with this game of dice, but we do not
seem to have adequate sources for that at the moment, or at least such sources
are not known to this author.

The hymn on dice in the Rgveda

Games of chance, such as dice, certainly existed in Indian tradition from the
earliest times. We find an extraordinary aksa sukta or hymn on dice in the Rgveda
(10.2.34). The long hymn begins by comparing the pleasure of gambling with the
pleasure of drinking somal

“There is enjoyment like the soma in those dice”.2! (HTHEIT HITaaeqq =)

It goes on to describe how everyone avoids a gambler, like an old man avoids
horses, even his mother and father feign not to recognize him, and he is separated
from his loving wife. Many times the gambler resolves to stay away, but each
time the fatal attraction of the dice pulls him back. With great enthusiasm he

19This is argued in more detail in C. K. Raju, Cultural Foundations of Mathematics, cited
above. See also notes 15 and 16 above.

20Mahavir, Ganita Sara Samgraha, Hindi trans. L. C. Jain, Jain Samskrti Samrakshaka
Sangha, Sholapur, 1963.

21Rgveda, 10.2.34.1
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reaches the gambling place, hoping to win, but sometimes he wins and sometimes
his opponent does. The dice do not obey the wishes of the gambler, they revolt.
They pierce the heart of the gambler, as easily as an arrow or a knife cuts through
the skin, and they goad him on like the ankus, and pierce him like hot irons. When
he wins he is as happy as if a son is born, and when he loses, he is as if dead.
The 53 dice dance like the sun playing with its rays, they cannot be controlled
by the bravest of the brave, and even the king bows before them. They have no
hands, but they rise and fall, and men with hands lose to them. The gambler’s
wife remains frustrated and his son becomes a vagabond. He always spends his
night in other places. Anyone who lends him money doubts that he will get it
back. The gambler who arrives in the morning on a steed leaves at night without
clothes on his back. [Such is the power of dice!l] O Dice, I join the ten fingers of
my hands and bow to the leader among you!

THE NOTION OF A FAIR GAME AND THE FREQUENTIST
INTERPRETATION OF PROBABILITY

Fair and deceitful gambling in the Mahabharata

This tells us a great deal about the social consequences of gambling, but still
very little about how exactly the game was played. (This is naturally assumed
to be known to all.) But we do find something interesting from a philosophical
perspective on probability. For, from the earliest times, there was also a notion of
what constitutes a “fair game”, a notion which is today inextricably linked to the
notion of probability.

This can be illustrated by a story from the Mahabharata epic. A key part of
the story, and the origin of the Mahabharata war, relates to the way the heroes
(Pandava-s) are robbed of their kingdom by means of a game of dice (@ HIsT).
They cannot very well refuse the invitation to play dice because the game involves
risk, and a Kshatriya is dishonoured by refusing to partake in an enterprise in-
volving risk. However, at the start of the game, Yudhisthira, the leader of the
Pandavas, makes clear that he knows the dice are loaded, or that the game will
involve deceit. He says: “FfsRfa@a+ 919 T FTATT T2TRT:” (Mbh, Sabha Parva,
59.5). That is, “Deceitful gambling is sinful, there is no Kshatriya valor in it.”

Philosophically speaking, there clearly are two concepts here: “deceitful gam-
bling” as opposed to “fair gambling”. The notion of a fair game, though not
explicitly defined, is critical to the story, and involves some notion of probability
implicit or explicit. The Mahabharata narrative itself brings out the unfairness of
the game both through Yudhishthira’s statement, at the beginning of the game,
and by telling us about a long series of throws in each one of which Yudhishthira
loses, without ever winning once. Of course, there is room to argue, as the devil’s
advocate might, and as Duryodhana’s uncle Shakuni does, that it is a case of
gambler’s ruin or a long run of bad luck with a finite amount of capital howsoever
large. Apart from the Yudhisthira-Shakuni dialogue, the Mahabharata narrative
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itself carries the depiction of this unfairness to the utmost. Yudhisthira goes on
losing, and in desperation, he even stakes his wife, Draupadi, who is then deemed
to have been won, and publicly stripped and insulted by Duryodhana.??

Interestingly, a little later in the same epic, Yudhisthira, now banished to the
forest, recounts his woes: how he was cheated out of a kingdom and his wife
insulted. To console him, a sage recounts to him the celebrated love story of Nala
and Damayanti. King Nala too lost his kingdom—once again through deceitful
gambling. Having lost also his last remaining clothes in the forest, he covers
himself with half of Damayanti’s sari, and abandons her in the forest. He takes
up a job as a charioteer with king Rtuparna of Ayodhya. His aim is to learn the
secret of dice from Rtuparna , for he has been advised by a Naga prince that
that knowledge will help him win back his kingdom. He gets an opportunity, at a
tense moment, while rushing from Ayodhya to Vidarbha for the announced second
marriage (swayamuvara) of Damayanti whom Rtuparna too wants to wed. Nala
stops near a Vibhitaka tree?>—it is significant that the nuts of this very tree, with
five faces, were used in the ancient Indian game of dice—and Rtuparna can’t resist
showing off his knowledge of mathematics (ganita vidya) by saying: the number
of fruits in the two branches of the tree is 2095, count them if you like.

Nala decides to stop and count them. Rtuparna, who is apprehensive of being
delayed and knows that he cannot reach in time without Nala’s charioteering skills,
suggests that Nala should be satisfied with counting a portion of one branch.

Then the king reluctantly told him, ‘Count. And on counting the leaves
and fruits of a portion of this branch, thou wilt be satisfied of the truth
of my assertion.’?*

Nala finds the estimate accurate and wants to know how it was done, offering
to exchange this knowledge with his knowledge of horses. “And king Rtuparna,
having regard to the importance of the act that depended upon Vahuka’s [Nala’s]
good-will, and tempted also by the horse-lore (that his charioteer possessed), said,
‘So be it.” As solicited by thee, receive this science of dice from me...” (ibid). (The
story has a happy ending, and Nala does get back his wife and his kingdom.)
From our immediate point of view, the interesting thing is the way the Mahab-
harata text conflates sampling theory with the “science of dice”. (It is legitimate
to call this “science”, for there is a clear relation to a process of empirical ver-
ification, by cutting down the tree and counting.) This connection of sampling
theory to the game of dice is mentioned by Hacking,?® who attributes it to V. P.
Godambe. They have, however, overlooked the other aspect of the story, which is
that this knowledge was regarded as secret, and Rtuparna parts with it only under

22Eventually, it is decreed that Yudhisthira incorrectly regarded her as his property to be
staked, however, one of the heroes, Bhim, swears that he will break Duryodhana’s thigh, on
which he seats Draupadi, and also drink the blood of his brother Dusshasana who forcibly
dragged Draupadi to the court, both of which promises he fulfills years later in the battlefield.

23Mahabharata, van parvae, 72, trans. K. M. Ganguly, 1883-1896, Book 3, pp. 150-51.

244bid, p. 151.

25Tan Hacking, The Emergence of Probability, cited earlier, pp. 6-9.
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extraordinary conditions; therefore, one should not expect to find this knowledge
readily in common mathematical texts.

“Fair gambling”, the law of large numbers

There are, however, repeated references to “deceitful gambling”. So, one can
ask: what exactly did “fair gambling” mean? As the notion is understood today,
in an ultimate sense, the fairness of the game cannot be established merely by
the law of large numbers, for it is well known that the frequentist interpretation
of probability fails because relative frequency converges to probability only in a
probabilistic sense. Shakuni is right that a long streak of bad luck is always possible
(and must almost surely occur in the long run). Therefore, also, the randomness
of a set of random numbers can ultimately be established only by reference to
the process which generated those random numbers and not merely by post-facto
statistical tests of randomness. Note the emphasis on “ultimate”. Given a series of
random numbers even a simple x2 test could show,2® for most practical purposes,
whether the series is concocted; the question is whether it can settle “all” doubt,
for there is always some residual probability that the test gave a wrong result,
and this problem of what to do with very small numbers takes us back to the old
problem of the law of large numbers. One cannot rule out the occurrence even of
probability-zero cases, and the best one can say is that they will “almost surely”
not occur.

Law of large numbers and the notion of convergence as a supertask

At this point, it is probably a good idea to understand two key differences between
the Indian philosophy of mathematics and the Western philosophy of mathemat-
ics. The contemporary notion of a fair game already involves some notion of the
law of large numbers, hence a notion of convergence in some sense (such as conver-
gence in probability). It does not matter how “weak” this notion of convergence
is (i.e. whether LP convergence or convergence in measure): the point is that, as
conceptualised in the Western philosophy of mathematics, any notion of conver-
gence involves a supertask—an infinite series of tasks. Such supertasks can only
be performed metaphysically, within set theory; however, barring special cases, a
supertask is not something that can be empirically performed (in any finite period
of time).

Supertasks and the clash of mathematical epistemologies

Historically speaking, the transmission of the calculus?” from India to Europe in
the 16'"" c. led to a clash of epistemologies. The situation is analogous to the

26E.g., C. R. Rao, Statistics and Truth: Putting Chance to Work, CSIR, New Delhi, 1989.
27C. K. Raju, Cultural Foundations of Mathematics, Pearson Longman, 2007, chp 9, “Math
wars and the epistemological divide in mathematics”.
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clash of epistemologies which occurred when the Indian arithmetic techniques,
called the Algorismus (after al Khwarizmi’s latinized name), or “Arabic numer-
als”, were imported into Europe and clashed with the abacus or the native Roman
and Greek tradition of arithmetic. With regard to the Indian calculus, Western
philosophers did not understand its epistemology, and felt that it involved super-
tasks. The practical usefulness of the calculus (in calculating trigonometric values,
navigational charts etc.) then created the need to justify such supertasks. In the
Western philosophy of mathematics, this mistaken belief about supertasks arose
because of two reasons, (1) a belief in the perfection of mathematics, and (2) a
distrust of the empirical as means of proof.

Thus, for example, reacting to the use of the new-fangled calculus-techniques
by Fermat and Pascal, Descartes?® wrote in his Geometry that comparing the
lengths of straight and curved lines was “beyond the capacity of the human mind”.
Galileo’s reaction, in his letters to Cavalieri, was similar, and he ultimately left it
to his student Cavalieri to take credit or discredit for the calculus.

Descartes’ reaction seems idiosyncratic and excessive, because any Indian child
knew how to measure the length of a curved line empirically by using a piece of
string, or Sulba or rajju, and this was done in India, at least since the days of the
Sulba sutra [—500 CE]. Perhaps, Descartes thought that the European custom of
using a rigid ruler was the only way of doing things. (European navigators certainly
had a serious problem for just this reason.) In any case, Descartes proceeded from
the metaphysical premise that only the length of a straight line was meaningful. On
this metaphysical premise, he thought that the length of a curved line could only
be understood by approximating it by a series of straight-line segments. However
large the number of straight line segments one might use, and howsoever fine the
resulting approximation might be, it remained “imperfect”, hence was not quite
mathematics, for mathematics (Descartes believed) is perfect and cannot neglect
the smallest quantity.

Descartes was willing to make a concession and allow that infinitesimal quan-
tities could be neglected (a premise shared by many of his contemporaries, in-
cluding, later Berkeley, in his criticism of Newton, and a process later formalised
in non-standard analysis). Therefore, the only situation Descartes was willing to
contemplate as acceptable was a situation where the neglected error was infinites-
imal. But this required an infinity of straight line segments, each of infinitesimal
length. But that created another difficulty: to compute the length of the curved
line, one now had to sum an infinity of infinitesimals. And this, thought Descartes,
was a supertask only God could perform.?° (This was in the days before formal
mathematics. Descartes thought of summing an infinite series by actually carrying
out the sum.)

28René Descartes, The Geometry, Book 2, trans. David Eugene and Marcia L. Latham, Ency-
clopaedia Britannica, Chicago, 1990, p. 544.

29For more details, see C. K. Raju, “The Indian Rope Trick”, Bhartiya Samagjik Chintan T(4)
(New Series) (2009) pp. 265-269. http://ckraju.net/papers/MathEducation2RopeTrick.pdf.
Also, Cultural Foundations of Mathematics, cited earlier, for more details.
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That is, with the FEuropean way of thinking about mathematics as “perfect”,
the problem of neglecting small numbers got converted into the problem of super-
tasks or convergence. This got related to the difficulty of summing an “infinity of
infinitesimals”. It is these philosophical problems (supertasks, convergence) which
are deemed to have been resolved in the Western tradition of mathematics today,
through formal set theory, which enables the supertasks needed for the definition
of formal real numbers and limits to be carried out formally, and which are needed
for the current notion of a “fair game”.

To put matters in another way, the philosophical issue which blocks the fre-
quentist interpretation of probability is the Western belief that mathematics is
“perfect”, and hence cannot neglect even the smallest quantity, such as 107200,
In practice, of course, this frequentist understanding is commonly used in physics
and works wonderfully well with a gas in a box where a “large” number may mean
only 10%? molecules.

In Western thought, however, what is adequate for physics is inadequate for
mathematics, because empirical procedures are suspect and regarded as inferior
to metaphysical procedures which are regarded as certain and “ultimate”. This
attitude is, in fact, at the core of almost all Western philosophy: deduction, a
purely metaphysical process, is believed to be surer than induction, which involves
an empirical process.

(To simplify the discussion, we are not getting here into another fine issue:
the very division of physical and metaphysical in terms of Popper’s criterion of
refutability already involves inductive processes, and their relative valuation, for
logical refutability does not guarantee empirical refutability, which latter requires
an inductive process. Popper claimed that he had solved the problem of induc-
tion,?? since probabilities, defined the Kolmogorov way, are not ampliative and are
left unaffected by any new experiments. However, Popper overlooked the fact that
empirically one can only obtain estimates of probabilities, never the probabilities
themselves, and estimates of probabilities may be ampliative. So, Popper did not
succeed in throwing any new light on the problem of induction.)

Suffice to say that these difficulties regarding “the fear of small numbers” and
“inferiority of the empirical” are closely related to the understanding of the ”law
of large numbers” on the one hand, and , on the other hand, to the notion of
“convergence” and “limits” that developed when Europeans tried to assimilate
the calculus imported from India in the 16" c¢. CE.

Zeroism: beyond the clash of epistemologies

The hate politics that prevailed for centuries in Europe during the Crusades and
Inquisition had a decisive impact not only on the Western history of science, but
also on its philosophy: both had to be theologically correct (on pain of death).
The way this was exploited by colonialists and racists is made abundantly clear

30K. R. Popper, Realism and the Aim of Science, PS to LscD, vol 1, Hutchinson, London,
1982.
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in various ways. For example, Frank Thilly’s text on philosophy, used as a text in
pre-independence India, starts with the dismissal of all non-Western traditions as
“non-philosophy”. This belittling of anything non-Western as inappropriate and
not-quite-science still represents a typical Western attitude today.

However, if we abandon the current Western historical myths about mathemat-
ics in Indian tradition, and look at the tradition per se, that gives us a fresh angle
on the philosophical problems related to small numbers, and supertasks and the
alleged unreliability of empirical procedures, which philosophical problems are inti-
mately linked to the notion of convergence, and the related issue of the frequentist
interpretation of probability.

First, let us take note of the differences in the cultural context. Basically, in
India, unlike Europe, there was never a monopoly or hegemony of any single reli-
gion, and in this pluralistic (and largely secular) Indian environment, where many
different brands of metaphysics were prevalent, there was no question of treating
any particular brand of metaphysics as certain. Different people may (and did)
have conflicting beliefs even about logic from the earliest times.?! The Lokayata
rejected deduction as an inferior technique which did not lead to sure knowledge.
The tradition in India, since the time of the Buddha, was to decide truth by
debate, and not by the forcible imposition of any one brand of metaphysics.

Since metaphysics carried no certitude, the empirically manifest (pratyaksa)
was the primary basis of discourse for two persons with conflicting metaphysical
beliefs (even about logic etc.). This was the one (and only) means of proof which
was accepted by all philosophical schools of thought in India. All this is in striking
contrast to Western tradition where mathematics is regarded as metaphysical, and
this metaphysics is simply declared, by social fiat, to be “universal” and certain
like a religious belief. This attitude emerged naturally in the West, where math-
ematics was linked to religion and theology, and was spiritual and anti-empirical
since the days of Plato and Neoplatonists like Proclus. (Indeed the very name
“mathematics” comes from mathesis, meaning learning, and learning, on the well-
known Platonic/Socratic doctrine, is recollection of knowledge obtained in past
lives, and so relates to stirring the soul. Mathematics was thought of as being
especially good for this purpose, since it involved eternal truths which moved the
eternal soul by sympathetic magic.) It is this belief—that mathematics contained
eternal truths—which led to the belief that mathematics is perfect and hence
cannot neglect the smallest quantity.

We have seen that the philosophical issue which blocks the frequentist interpre-
tation of probability is just this Western belief in the perfection of mathematics.
A number, howsoever small, such as 1072 cannot be neglected and set equal to
zero. On the other hand, Indian tradition allowed this to be done, somewhat in
the manner in which rounding is done today, but with a more sophisticated phi-
losophy known as ‘nyavada which I have called zeroism,?? so as to emphasize the

31B. M. Baruah, A History of Pre-Buddhistic Indian Philosophy, Calcutta, 1921; reprint Moti-
lal Banarsidass, Delhi, 1970.

32C. K. Raju, “Zeroism and Calculus without Limits”, 4t®

dialogue between
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fruitful practical aspects of the philosophy, and avoid sterile controversies about
the exact interpretation of Buddhist texts.

Now it so happens that the formula for the sum of an infinite (anantya) geo-
metric series was first developed in India (we find this in the Aryabhatiya Bhasya
of the 15th-16th c. Nilakantha3?). This naturally involved the question of what
it means to sum an infinite series. A procedure existed to test the convergence
of an infinite series (of both numbers and functions), and I have explained it
elsewhere in more detail.?* This is similar to what is today called the Cauchy
criterion of convergence, except for one aspect. Thus, given an infinite series of
numbers, ¥a,, and an € > 0, the process checked whether there was an N be-
yond which || Ziv:]:,n an|| < €. The supertask of actually summing the residual
partial sums for all numbers m could obviously not be carried out except in some
special cases (such as that of the geometric series). However, if S(k) = Zﬁzl an
denotes the partial sums, the usual process was to check whether the partial sums
became “constant”, beyond some N.3* Obviously, the partial sums S(k) would
never literally become constant, and when successive terms are added, there would
always be some change (except when all the terms of the series are zero beyond
N, so that the infinite sum reduces to a finite sum). So this “constancy” or “no
change” was understood to hold only up to the given level of precision () in use.
That is, the sum of an infinite series was regarded as meaningful if the partial
sums S(k) became constant, after a stage, up to a non-representable (or discard-
able) quantity: ||S(N +m) — S(N)| < ¢, which is just the criterion stated earlier.
What exactly constitutes a “non-representable” or “discardable” quantity () is
context-dependent, decided by the level of precision required, and there need be
no “universal” or mechanical rule for it.

Apart from a question of convergence, a key philosophical issue which has gone
unnoticed relates to representability. The decimal expansion of a real number,
such as 7, also corresponds to an infinite series. Regardless of the convergence of
this series, it can be written only up to a given number of terms (corresponding
to a given level of precision): even writing down the terms in the infinite decimal
expansion is a supertask: this is obvious enough when there is no rule to predict
what the successive terms would be. So a real number such as m can never be
accurately represented; Indian tradition took note of this difficulty from the earliest
times, with the sulba sutra-s (-500 CE or earlier) using the words®¢ &fa@rT (“with
something left out”) or3” qrfeT (sa + anitya = “impermanent, inexact”), and

Buddhism and Science, Nalanda, 2008. Draft at http://ckraju.net/papers/
Zeroism-and-calculus-without-limits.pdf.

33 Aryabhatrya of Aryabhatacarya with the Bhasya of Nilakanthasomasitvan, ed. K. Sambasiva
Sastri, University of Kerala, Trivandrum, 1930, reprint 1970, commentary on Ganita 17, p. 142.

34C. K. Raju, Cultural Foundations of Mathematics, cited above, chp. 3.

35ibid. p. 177-78, and e.g., Kriyakramakari, cited above, p. 386.

36Baudhayana sulba siutra, 2.12. S. N. Sen and A. K. Bag, The Sulbasttras of Baudhayana,
Apastamba, Katyayana, and Manava, INSA, New Delhi, 1983, p. 169.

37 Apastamba, $ulba sitra, 3.2. Sen and Bag, cited above, p. 103. The same thing is repeated
in other Sulba sutra-s.
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early Jain works (such as the Sarya prajnapati, satra 20) also use the term kincid
videsadhika (“a little excess”) in describing the value of 7 and /2. Aryabhata (5"
c. CE) used the word®® HTE= (near value), which term is nicely explained by
Nilakantha in his commentary,3® essentially saying that the “real value” (a'l'ﬁﬁgl‘
H%AT) cannot be given.

Taking cognizance of this element of non-representability fundamentally changes
arithmetic. This happens, for example, in present-day computer arithmetic, where
one is forced to take into account this element of non-representability, for only a
finite set of numbers can be represented on a computer. Consequently, even integer
arithmetic on a computer can never obey the rules of Peano’s arithmetic. In the
case of real numbers, or floating point computer arithmetic, of course, a mechanical
rule is indeed set up for rounding (for instance in the IEEE floating point standard
754 of 1986), and this means that addition in floating point arithmetic is not an
associative operation,*® so that floating point arithmetic would never agree with
the arithmetic according to any standard formal algebraic structure such as a ring,
integral domain, field etc.

In Indian tradition, this difficulty of representation connects to a much deeper
philosophy of §anyavada. On the Buddhist account of the world, the world evolves
according to “conditioned coorigination”. (A precise quantitative account of what
this phrase means to me, and how this relates to current physics is a bit technical,
and is available in the literature for those interested in it.*!) The key point is that
there is genuine novelty of the sort that would surprise even God, if he existed.
There is no rigid linkage (no Newton’s “laws”) between present and past, the
present is not implicit in the past (and cannot be calculated from knowledge of
the past, even by Laplace’s demon). Accordingly, there is genuine change; nothing
stays constant. But how does one represent a non-constant, continually changing
entity? Note that, on Buddhist thought, this problem applies to any entity, for
Buddhists believe nothing real can exist unchanged or constant for two instants, so
there is no constant entity whatsoever which is permanent or persists unchanged.

This creates a difficulty even with the most common utterances, such as the
statement “when I was a boy”, for I have changed since I was a boy, and now
have a different size, gray hair etc. The linguistic representation however suggests
that underlying these changes, there is something constant, the “I” to which these
changes happen. Buddhists, however, denied the existence of any constant, un-
changing essence or soul for it was neither empirically manifest, nor could it be
inferred: the boy and I are really two different individuals with some common

38 Ganita 10, trans. K. S. Shukla cited earlier.

39 Aryabhatrya bhasya, commentary on Ganita 10, ed. Sambasiva Sastry, cited earlier, p. 56.

40For an example of how this happens, see C. K. Raju, “Computers, mathematics education,
and the alternative epistemology of the calculus in the Yuktibhasa”, Philosophy Fast and West,
51(3) 2001, pp. 325-62.

41The idea is to use functional differential equations of mixed-type to represent physical time
evolution. This leads to spontaneity. See C. K. Raju, Time: Towards a Consistent Theory,
Kluwer Academic, 1994, chp. 5b. Also, C. K. Raju, “Time Travel and the Reality of Spontaneity”,
Foundations of Physics 36 (2006) pp. 1099-1113.
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memories. However, while Buddhists accept the reality of impermanence, there is
a practical problem of representation in giving a unique name to each individual at
each instant. Consider, for example, Ashoka. No one, not even the Buddhists, de-
scribe him as Ashokal, Ashoka2, and so on, with one number for each instant of his
life, which cumbersome nomenclature would require some billion different names
even on the gross measure of one second as an atomic instant of time. Therefore,
for practical purposes, Buddhists recognize the paucity of names, and still use a
single name to represent a whole procession of individuals. This “constancy” of
the representation is implicitly understood in the same sense as the constancy of
the partial sums of an infinite series: namely, one neglects some small differences
as irrelevant to the context. That is, on the Buddhist view of constant change, the
customary representation of an individual, used in everyday parlance, as in the
statement “when I was a boy”, can be obtained only by neglecting the changes in-
volved (my size, my gray hair, etc) as inconsequential or irrelevant in the context,
and which changes are hence discarded as “non-representable” (for the practical
purpose of mundane conversation, in natural language).

So, from the Buddhist perspective of impermanence, mundane linguistic us-
age necessarily involves such neglect of “inconsequential” things, no matter what
one wants to talk about. Note the contrast from the idealistic Platonic and Neo-
platonic belief. Plato and Neoplatonists believed in the existence of ideal and
unchanging or eternal and constant entities (soul, mathematical truths). Within
this idealistic frame, mundane linguistic usage (as in the statement “when I was a
boy”) admits a simple justification in straightforward sense that change happens
to some underlying constant or ideal entity. But this possibility is not available
within Buddhism, which regards such underlying ideal entities as fictitious and
erroneous, and can, therefore, only speak about non-constant entities, as if they
were constant. The dot on the piece of paper is all we have, it is the idealization
of a geometric point which is erroneous. (Apart from the idealist position, the
formalist perspective of set theory also fails, for Buddhist logic is not two valued.
But I have dealt with this matter in detail, elsewhere, and we will see this in more
detail below.)

Thus, Sunyavada or zeroism provides a new way to get over the “fear of small
numbers”. It was, I believe, Borel who raised the question of the meaning of
small numbers such as 1072°0. On the $§unyavada perspective, we can discard
such numbers as practically convenient. (We have nothing better, no “ideal” or
“perfect” way of doing things.) We are not obliged to give a general or universal
rule for this, though we can adopt convenient practices.

What this amounts to is a realist and fallibilist position. All knowledge (includ-
ing mathematical knowledge) is fallible.*> Therefore, when given an exceesively

42If mathematical proof is treated as fallible, the criterion of falsifiability would need modifi-
cation. When a theory fails a test, it is no longer clear what has been refuted: (a) the hypothesis
or (b) the deduction connecting hypothesis to consequences. C. K. Raju, “Proofs and refutations
in mathematics and physics”, in: History and Philosophy of Science, ed. P. K. Sen, PHISPC (to

appear).
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small number we may discard it, as in customary practice, or in computer arith-
metic. (Unlike computer arithimetic, where one requires a rule, with human arith-
metic, we can allow the “excessive smallness” of the number to be determined by
the context.) It is possible, that this leads to a wrong decision. If enough evidence
accumulates to the contrary, we revise our decision. It is the search for immutable
and eternal truths that has to be abandoned. Such eternal truths are appropriate
to religion not any kind of science.

Thus the traditional Indian understanding of mathematics, using zeroism, dis-
penses with the need for convergence, limits, or supertasks, and rehabilitates the
frequentist interpretation of probability, in the sense that it provides a fresh answer
to a long-standing philosophical difficulty in the Western tradition.

SUBJECTIVE PROBABILITIES AND THE UNDERLYING LOGIC OF
SENTENCES

Probabilities of singular events

Of course, there are other problems with the frequentist interpretation: for ex-
ample, it does not apply to single events, for which one might want to speak of
probability. The classic example is that of a single footprint on a deserted beach
(or the origin of life). There is some probability, of course, that someone came in
a helicopter and left that single footprint just to mystify philosophers. But, nor-
mally, one would regard it as a natural phenomenon and seek a natural explanation
for it.

In this context there is an amusing account from Indian Lokayata tradition,
which is the counterpart of the Epicurean perspective in Greek tradition. Here, a
man seeking to convert his girlfriend to his philosophical perspective, goes about
at night carrying a pair of wolf’s paws. He makes footprints with these paws. His
aim is to demonstrate the fallibility of inference. He argues that by looking at
the footprints, learned people will infer that a wolf was around, and they will be
wrong. (We recall that the Lokayata believed that the only reliable principle of
proof was the empirically manifest.)

More seriously, such singular events pose a serious problem today in quantum
mechanics, where the “probability interpretation of the wave function” is called
into play to explain interference of probabilities exhibited by single objects. A
typical illustration of such interference is the two-slit diffraction pattern that is
observed even when it is practically assured that electrons are passing through the
slit one at a time. Understanding the nature of quantum probabilities has become
a major philosophical problem, and we describe below some attempts that have
been made to understand this problem by connecting it to philosophies and logics
prevalent in ancient Indian tradition.
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Quantum mechanics, Boolean algebra, and the logic of propositions

In the 1950’s there was a novel attempt to connect the foundations of probabil-
ity theory to the Jain logic of syadavada, by three influential academicians from
India: P. C. Mahalanobis,*® founder of the Indian Statistical Institute, J. B. S.
Haldane,** who had moved to that institution, and D. S. Kothari,*® Chairman of
the University Grants Commission. Subsequently, the quasi truth-functional logic
used in the structured-time interpretation of quantum mechanics*® was connected
to Buddhist logic.4”

To understand these attempts, first of all, let us connect them to the more
common (Kolmogorov) understanding of probability as a positive measure of total
mass 1 defined on a Boolean o-algebra (usually of Borel sets of a topological space).
The common definition typically requires set theory, as we saw above, to facilitate
the various supertasks that are required, whether for the construction of formal
real numbers as Dedekind cuts, or as equivalence classes of Cauchy sequences, or
for the notion of convergence required by the law of large numbers. However,
from a philosophical perspective it is more convenient to use statements instead
of sets (though the two are obviously interconnected). Thus, instead of defining
probabilities over measurable sets, it is more natural to define probabilities over
a Boolean algebra of statements. This, incidentally, suits the subjectivist inter-
pretation, for the probability of a statement could then be taken to indicate the
degree of (general) subjective belief in that statement (or the objective propensity
of that statement to be true, whatever that means).

The immediate question, however, is that of the algebraic structure formed by
these statements. First of all, we can set aside the specifically o-algebra aspect,
for we have already dealt with the notion of convergence and supertasks above.
For the purposes of this section we will focus on the Boolean algebra part. Why
should probability be defined over a Boolean algebra?

The answer is obviously that if we have a 2-valued logic of sentences, then a
Boolean algebra is what we naturally get from the usual notion of “and”, “or”,
“not”, which are used to define the respective set-theoretic operations of inter-
section, union and complementation. What is not obvious is why these “usual”
notions should be used, or why logic should be 2-valued.

Quantum mechanics (and especially the problem of the probabilities of singular
events in it) provides a specific empirical reason to call the Boolean algebra into
question. With probabilities defined on a Boolean algebra, joint distributions of

43p. C. Mahalanobis, ‘The Foundations of Statistics (A Study in Jaina Logic)’, Dialectica 8,
1954, pp. 95-111; reproduced in Sankhya, Indian Journal of Statistics, 18, 1957, pp. 183-94.

44J. B. S. Haldane, ‘The Syadavada system of Predication’, Sankhya, Indian Journal of Statis-
tics, 18, 1957, pp. 195-200.

45D, S. Kothari, ‘Modern Physics and Syadavada’, Appendix IV D in in Formation of the
Theoretical Fundamentals of Natural Science vol. 2 of History of Science and Technology in
Ancient India, by D. P. Chattopadhyaya, Firma KLM, Calcutta, 1991, pp. 441-48.

46, K. Raju, Time: Towards a Consistent Theory, cited above, chp. 6B, “Quantum Mechan-
ical Time”.

47C. K. Raju, The Eleven Pictures of Time, Sage, 2003
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random variable are assured to exist. This is, however, known to not happen
in quantum mechanics. (We will not go into details, since our primary concern
here is with Indian tradition, and not quantum mechanics. However, this author
has explained the detailed relation to quantum mechanics elsewhere, at both a
technical?® and a non-technical level.??) The Hilbert space formulation of quantum
mechanics starts with the premise that quantum probabilities cannot be defined on
a Boolean algebra, since joint distributions do not exist. The appropriate algebraic
structure is taken to be that of the lattice of subspaces (or projections) of a Hilbert
space (although there are numerous other opinions about what the exact algebraic
structure ought to be).

The usual definition of a random variable as a measurable function actually
requires only the inverse function, which is a homomorphism which preserves the
algebraic structure. In the Hilbert space context, this definition of a random
variable as a homomorphism (on a lattice, not an algebra) naturally leads one
to identify random variables with projection-valued measures (spectral measures).
By the spectral theorem, such measures correspond to densely-defined, self-adjoint
operators in this Hilbert space. Since the lattice of projections is non-distributive,
these random variables do not admit joint distributions. This corresponds to
the more common assertion (“uncertainty principle”) that dynamical (random)
variables (self-adjoint operators) which do not commute cannot be simultaneously
measured.

To return to the question of logic, unlike in India, where different types of logic
have been in existence for over 2500 years, from pre-Buddhist times,? the West
took cognizance of the existence of logics that are not 2-valued, only from the
1930’s onwards, starting with Lukaciewicz who proposed a 3-valued logic, where
the truth values could be interpreted as “true”, “false”, and “indeterminate”.
Could such a 3-valued logic account for quantum probabilities? This question was
first investigated by Reichenbach, in an unsuccessful interpretation of quantum
mechanics.

The 3 Indian academics mentioned above also interpreted the Jain logic of
syadavada (perhaps-ism) as a 3-valued logic (Haldane), and explored 3-valued
logic as a philosophical basis for formulating probabilities (Mahalanobis), and in-
terpreting quantum mechanics (Kothari). Haldane’s idea related to perception.
With repeated experiments, something on the threshold of perception (such as
a sound) may be perceptible sometimes, and sometimes not. In such cases, the
“indeterminate” truth value should be assigned to the statement that the “some-
thing” is perceptible. Mahalanobis’ idea was that this third truth value was al-
ready a rudimentary kind of probability, for it expressed the notion of “perhaps”.
Kothari’s idea was to try and explain quantum mechanics on that basis (though
he overlooks Reichenbach’s earlier unsuccessful attempt).

48C. K. Raju, Time: Towards a Consistent Theory, cited above, chp. 6B, “Quantum Mechan-
ical Time”.

49C. K. Raju, The Eleven Pictures of Time, Sage, 2003.

50B. M. Baruah, A History of Pre-Buddhistic Indian Philosophy, cited above.
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Buddhist and quasi truth-functional logic

While Haldane’s interpretation is clear enough within itself, it is not clear that
it accurately captures the logic of syadavaada. Thus, the Jain tradition grew in
the vicinity of the Buddhist tradition (the Buddha and Mahavira were contem-
poraries). However, Buddhist logic is not 3-valued. For example, in the Digha
Nikaya, the Buddha asserts the existence of 4 alternatives (catuskoti): (1) The
world is finite; (2) the world is not finite (= infinite); (3) the world is both finite
and infinite; and (4) the world is neither finite nor infinite.5!

This logic of 4-alternatives does not readily fit into a multi-valued truth-functional
framework. Especially, the third alternative, which is of the form A A —A, is a
contradiction within 2-valued logic, and difficult to understand even within the
frame of 3-valued logic, where it cannot ever be “true”’. The reason why 3-valued
logic is not appropriate for quantum probabilities is roughly this: in the case of
the two-slit experiment, what is being asserted is that it is true that the electron
passed through both slit A and slit B, and not that in reality it passed through
only one slit, but we do not know which slit it passed through. What is being
asserted is that we know that Schrodinger’s cat is both alive and dead, as in the
third alternative above, and not that it is either alive or dead, but we do not know
which is the case.

However, the 3™ alternative of the Buddhist logic of 4 alternatives (catuskoti)
makes perfect sense with a quasi truth-functional logic. The standard semantics
here uses the Tarski-Wittgenstein notion of logical “world”, as “all that is the
case”. On this “possible-world semantics” one assigns truth values (either true or
false) to all atomic statements: such an assignment of truth values represents the
possible facts of the world (at one instant of time), or a “possible world”. This
enables the interpretation of modal notions such as possibility and necessity: a
statement is “possible” if it is true in some possible worlds, and “necessary” if it is
true in all possible worlds (tautology). In fact, Haldane appeals to precisely this
sort of semantics, in his interpretation of Jain logic, except that his “worlds” are
chronologically sequential. Thus, A is true at one instant of time, while not-A is
true at another instant of time—there is nothing paradoxical about a cat which
is alive now, and dead a while later. However, this, as we have observed, is not
appropriate to model the situation depicted by quantum mechanics.

With quantum mechanics what we require are multiple logical worlds attached
to a single instant of time. Parallel computing provides a simple and concrete
desktop model of this situation, with each processor represented by a separate log-
ical world. The meaningfulness of a quasi truth-functional logic is readily grasped
in this situation where multiple (logical) worlds are chronologically simultaneous
and not sequential, for this allows a statement to be simultaneously both true and
false. That is, with multiple (2-valued) logical worlds attached to a single instant

51Brahmajala sutta of the Digha Nikaya. (Hindi trans.) Rahul Sankrityayana and Jagdish
Kashyapa. Delhi: Parammitra Prakashan, 2000, pp. 8-9; (English trans.) Maurice Walshe,
Boston: Wisdom Publication, 1995, pp. 80-81. For a more detailed exposition, see C. K. Raju,
“Logic”, in Encyclopedia of Non-Western Science, Technology and Medicine, Springer, 2008.
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of time, it is meaningful to say that A is true in one world while —A is simultane-
ously true in another. So, a statement may be simultaneously both true and false,
without trivializing the theory, or making it inconsistent. From our immediate
perspective, the important thing is this: such a quasi truth-functional logic leads
on the one hand to an algebraic structure appropriate to quantum probabilities,
which structure is not a Boolean algebra.?> On the other hand, Buddhist logic
(catuskoti) naturally admits an interpretation as a quasi truth-functional logic.
Thus, Buddhist logic (understood as quasi truth-functional) leads to just the sort
of probabilities that seem to be required by quantum mechanics.

This quasi truth-functional logic, corresponding to simultaneous multiple worlds,
is not a mere artificial and post-facto construct imposed on either quantum me-
chanics or Buddhist thought. From the viewpoint of physics, quasi truth-functional
logic arises naturally by considering the nature of time. This is best understand
through history. Hoping to make “rigorous” the imported calculus, and the notion
of derivative with respect to time required for his “laws”, Newton made time meta-
physical (“absolute, true, and mathematical time” which “flows equably without
relation to anything evternal”®®). Eventually, this intrusion of metaphysics and
religious belief into physics had to be eliminated, from physics, through a revised
physical definition of the measure of time; that directly led to the special the-
ory of relativity.®® A correct mathematical understanding of relativity, shows that
physical time evolution must be described by functional differential equations (and
not ordinary differential equations or partial differential equations). The further
elimination of the theological understanding of causality in physics makes these
functional differential equations of mixed-type. The resulting picture of physical
time evolution®® is remarkably similar to the core Buddhist notion of “conditioned
coorigination”: where the future is conditioned by the past, but not decided by it.
There is genuine novelty. Thus, the relation of the quasi truth-functional logic to
the revised notion of time, in physics, parallels the relation of Buddhist logic to the
Buddhist notion of “conditioned coorigination” (paticca samuppada). Note that
this last notion differs from the common notion of “causality” used in Western
thought, with which it is commonly confounded.

Of course, formal Western mathematics (and indeed much of Western philoso-
phy) is likely to be a long-term casualty of any departure from 2-valued logic. In
fact, the very idea that logic (or the basis of probability) is not culturally universal,
and may not be empirically certain, unsettles a large segment of Western thought,

52See the main theorem in C. K. Raju “Quantum mechanical Time”, cited above.

531, Newton, The Mathematical Principles of Natural Philosophy, A. Motte’s translation re-
vised by Florian Cajori, Encyclopedia Britannica, Chicago, 1996, p. 8.

54For an exposition of Poincaré’s philosophical analysis of the notion of time which led to the
special theory of relativity, see C. K. Raju, “Einstein’s time”, Physics Education (India), 8(4)
(1992) pp. 293-305. A proper clock was defined by postulating the velocity of light to be a
constant. This had nothing to do with any experiment. See, also, C. K. Raju, “The Michelson-
Morley experiment”, Physics Education (India) 8(3) (1991) pp. 193-200.

55C. K. Raju, “Time travel and the reality of spontaneity”, Found. Phys. 36 (2006) pp. 1099
1113.
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